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Introduction

o Until now, we either assumed that the time series of interest was
stationary (ARMA models) or that a simple transformation (logs,
first-differences) was enough to stationarize the time series.

¢ However, many economic and financial time series are clearly
not stationary and so given the importance of this feature we
reserve this set of slides to provide a more detailed and
structural analysis to this problem.

e Hence, the objective of this group of slides is to:

(a) Identify the consequences of ignoring the stationary
problem. The most hazardous case — the spurious
regression problem — is analyzed in some detail.

(b) Present the most typical deviations from the stationary
assumption in economic/financial time series and the
appropriate transformation.

(c) Explain the reasons that make each transformation so
effective, in particular, the log or the first-difference
transformation.

(d) Explain the logic of unit root tests and how this class of
statistics can be used to test if a time series is stationary or
nonstationary in the mean (unit root/trend stationary).
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The spurious regression problem |

e The researcher has to be very cautious with the econometric
analysis of nonstationary time series .

o [f the nonstationarity of the time series is ignored then:

(a) The estimators of the linear regression model may be
inconsistent and even divergent. Moreover, the standard
(normal) critical values of the usual t, F, LM statistics are not
correct anymore.

(b) The forecast accuracy of the model may be seriously
affected.

o We ilustrate item (a) using a simple but somewhat shocking
example with real time series data.

o What happens when we run a linear regression model between
variables with a unit root?
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The spurious regression problem ||

e Consider two presumably uncorrelated variables:

- CONS;: Real private consumption
- CORVM;: number of breeding cormorants
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The spurious regression problem |l

Consider the following static regression:

| log(CONS;) = iy + B1log(CORVM;) + &1

(1)

Naturally 3; = 0 and, hopefully, we obtain B2 ~ 0, 3; ~ 0 and a
very low value of t3,-

With real Danish data, we estimate the static regression in (1)
and obtain the following result:

| log(CONS;) = 12.145 + 0.095log(CORVM;) + &,

t;, = 80.90, t; = 6.30 and R? = 0.688!

The model suggests a clear positive relation between the
number of birds and aggregate consumption!

Furthermore, the number of birds can account for a large
proportion of the variation in consumption!
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The spurious regression problem |V

o The model seems to be perfectly adequate to explain the
Denmark cosumption behaviour but this is obviously a totally

absurd result/regression!
VA ﬁ

af

-

N = Consumption
13.2 - —— Number of breeding birds

1 1 1 1
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1 1 1 1
1985 1990 1995 2000

(b) Residuals from the regression of
(a) Plot of log(CONS;) and log(CORVM;)  log(CONS;) on log(CORVM;)

e From visual inspection of the time series plot and unit root tests
(not reported here), we conclude that both time series have a
unit root.

e The presence of a unit root generates these meaningless results.
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The spurious regression problem V

o This set of results is known as the spurious regression
problem. It occurs when the variables of the model are
nonstationary in the mean.

¢ In general, no matter the relevance of the model, a static
regression between unit root variables will result in:
(a) OLS estimators with high and statistically significant tAj ,
ji=1,... k.
(b) Very high R? and close to 1.
(c) Very low Durbin-Watson (DW) statistic and close to 0.

Important Warning 1

This is a very important problem but the inconsistency of the
estimators only holds for static regressions.
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The spurious regression problem VI

Important Warning 2

= Dynamic models such as ARIMA or regressions with lagged
dependent or independent variables provide inefficient but
consistent estimators even if the nonstationarity is ignored or
not properly modelled.

= The standard statistical inference tools —t, F, LM tests — do
not have standard normal distributions and, in particular, the
p-values provided by EViews are totally incorrect which
restricts considerably the statistical analysis of the model.
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Nonstationarity types |

e The theory underlying the class of ARMA models relies on the
assumption that the time series process, X;, is stationary:

‘ E(Xi) = p < o0, I e., constant over time‘

Var (X;) = E {(Xt - ;1,)2} = < o0, I. e., constant over time

| Cov (X, Xi—x) = E[(X — 1) (X« — )] = % , I- e., constant over time

o However, most observed economic and financial time series do
not seem to be well characterized as a stationary process which
poisons the reliability of the results.

o Fortunately, there are models that can be constructed to describe
the many different ways that a time series can be nonstationary.

e These models also show how the nonstationarity problem may
be treated in practical applications, in particular, how to transform
a nonstationary time series into a stationary one.
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Nonstationarity types Il

e The time series can be nonstationary in many different ways, and
we present the most typical deviations from the stationary
assumption in financial/economic time series:

1. Nonstationarity in variance
2. Nonstationarity in mean: Linear deterministic trends and
stochastic trends

o Identifying the nature of nonstationarity in the time series is an
essential step for a correct subsequent data analysis.

o The main challenge is that each form of nonstationarity demands
a different transformation.

e The application of an unnecessary or wrong transformation may
have detrimental effects in the statistical properties of the
econometric model and forecast performance.
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Nonstationarity in variance* (Optional) |

¢ Many time series have nonconstant variance and it is very
common for the variance to change as its level, 1;, changes:

| Var (X,) = cf (1) | @)

for some ¢ > 0 and a function f.

o We want to find a transformation, T, that renders a new series,
T(X;), with constant variance.

e The form of the transformation can be obtained with a first order
Taylor approximation argument. We start by approximating T (X;)
about the point ; which gives that:

| T(X) & T(jue) + T'(gue) (X — o) ®)

e According to equations (2) and (3), we have that the variance of
the transformed series can be approximated by:

Var [T (X;)] ~ ¢ [T (ue)]? f (1)
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Nonstationarity in variance* (Optional) Il

e Thus, to stabilize the variance, the transformation must be

choosen such that:

or, in other words:

1
T(M)—/f(m)d/tt

e For example, if the standard deviation is proportional to the level

so that Var (X;) = ¢i%, we have:

- -

dut = In ()
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Nonstationarity in variance* (Optional) Ill

¢ In general, we may use the Box-Cox power transformation:

X} —1
A

T(X) =

o Tipical values of A are —1,-0.5,0.5and 1. If A — 0,
T(X:) =In(Xp)

¢ In fact, the most used transformation is the
logarithm transformation.
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Nonstationarity in mean — trend-stationary models
I

o Many economic time series are not in accordance with the
constant mean assumption as they have a tendency to
systematically increase or decrease over time.

e One way to describe this pattern is to have a model where the
mean is not constant but instead follows a linear trend or even a
polynomial trend:

‘Xt:ﬂ’o+ﬁ1t+ut‘

‘Xr:‘30+.31t++s32t+...+38ptp+ut‘

where u; is a zero mean stationary process.

e Quadratic or higher order polynomial trends are very rare in
economic/financial time series data and so we focus on models
with a linear deterministic trend.
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Nonstationarity in mean — trend-stationary models
I

e To complete the description of the model and to make it useful in
practice, we have to be more concrete as regards to the
stochastic part of the model, u;.

¢ In theory, the most simple case is a model where the stochastic
component, u;, follows a white-noise process:

Xe = Bo+ Brt + uy, ug " (0,02) (4)

o However, in practical applications, it is almost unrealistic to have
a time series in which the deviations from the trend, X; — 5y — 1,
follow a white noise process. Time dependence is a proeminent
phenomenon as we constantly emphasize during the course.
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Nonstationarity in mean - trend-stationary models

e The most common situation is to find some pattern in the

ACF/PACF of the detrended variable, X; — 5y — 1, that suggests
a stationary and invertible ARMA representation for the
detrended variable:

X; = Bo + B1t + uy
S(L)ur = 6(L)er, e "< (0,02)
where ¢(L) =1 —¢1L — ... — ¢pLP and

(L) =1—-04L— ... —64L9. Moreover, the roots of the
polynomials ¢(z) and 6(z) are outside the unit circle.

This model representation may seem awkward but it is possible
to show that the process (5) can be written in the usual ARMA
representation but with a linear trend in the deterministic
component:

| @(L)X; = a0 + ot + 0(L)=,

where ag = S0 (1) + 1 X7 joy and aq = 19 (1).
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Nonstationarity in mean — trend-stationary models
IV

e For both models (4) and (5), it should be clear that the mean
changes over time E(X;) = 5y + 51t since E(u;) = 0.

e The detrended time series, X; — E(X;) = X; — o — pitis a
stationary and invertible process given that the roots of the
polynomials ¢(z) and 0(z) are outside the unit circle.

o A time series process with the two features described above is
called a trend-stationary process.

Definition (Trend-stationary processes)
A time series process is trend-stationary if:
(@) E (X) is a function of time, E (X;) = f () and, in general,
E (X;) = Po + Bit with 5o > 0 and 81 > 0, i. e., the unconditional
mean grows linearly over time.
(b) X; — E (X;) ~ stationary and invertible ARMA
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Nonstationarity in mean — trend-stationary models
\

o |t is immediate that both models (4) and (5) are
trend-stationary processes.

o Naturally, in practice we don’t know neither the true values of 3,
and 3¢ (needed to obtain X; — 39 — 31t) nor the theoretical ACF
and PACF of the detrended process.

e Hence, we obtain sample estimates of gy and 31 with the
following linear regression model estimated by OLS:

‘Xt:ﬂo+[31t+ut

and proceed with the analysis of the sample ACF/PACF of the
residual series U; = X; — 3p — fPit.

o We then use the Box Jenkins methodology to choose the orders
g and p.
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Simulated sample of a trend-stationary process

Graph and correlogram of a trend-stationary process with

Xi=2+0.01t+0.9X_1 + us, ur '~ N, 1)

TS
0
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Sample: 1500
Included observations: 500
Autocorrelation  Partial Correlation AC  PAC Q-Stat Prob
"= === 1 0988 088 49093 0.000
= 2 0976 0003 97126 0.000
= 3 0964 -0.001 14411 0.000
= 4 0953 0009 19008 0.000
= 5 0943 0034 23516 0.000
[ — 6 0933 0020 27941 0.000
= 7 0924 0017 32289 0.000
= 8 0916 0037 36569 0.000
= 9 0909 0042 40792 0.000
= 10 0902 0009 44959 0.000
= 11 0895 -0.001 4907.0 0.000
[ — 12 0889 0030 53131 0.000
[ — 13 0883 0020 57147 0.000
= 14 0877 -0.004 61118 0.000
[ 15 0871 0008 65044 0.000
= 16 0865 0012 68928 0.000
= 17 0860 0017 72771 0.000
= 18 0854 -0.023 76569 0.000
== 19 0848 -0.007 80320 0.000
= 20 0842 0027 84029 0.000
[ —] 21 0837 0023 87702 0.000
[ 22 0833 0026 91343 0.000
= 23 0828 -0.001 94953 0.000
[ — 24 0824 0004 98530 0.000
= 25 0819 0003 10208. 0.000
= 26 0814 -0.027 10559. 0.000
= 27 0809 0024 10908. 0.000
= 28 0805 0016 11251, 0.000
= 29 0500 -0.012 11592, 0.000
= 30 0797 0037 11931 0.000
= 31 0792 -0.019 12267. 0.000
= 32 0788 0003 12600. 0.000
= 33 0783 -0.023 12929 0.000
== 34 0777 -0.034 13265, 0.000
== 35 0772 0014 13577. 0.000
= 36 0767 0021 13895 0.000
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Graph and correlogram of the detrended series U; = X; — s§0 — §1t
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0.873 0.872
0.762 -0.004
0.674 0.041
0.604 0.030
0.539 -0.005
0.488 0.034
0.431 -0.045
0.367 -0.057
0.322 0.039
0.285 0.002
0.247 -0.020
0.212 -0.002
0.175 -0.038
0.146 0.019
0.108 -0.081
0.073 -0.028
0.056 0.051
0.037 -0.028
0.020 0.002
0.021 0.082
0.023 0.007
0.012 -0.039
-0.005 -0.035
-0.003 0.081
-0.007 -0.019
0.003 0.057
0.010 -0.014
0.019 0.028
0.013 -0.042
0.003 -0.029
0.010 0.047
0.007 -0.037
-0.002 -0.027
-0.010 -0.008
-0.015 -0.002
-0.018 0.018

380.68
670.91
898.65
10817
12277
1347.8
14418
1510.0
1562.7
1603.9
16349
1658.0
16736
1684.5
1690.5
1693.2
1694.8
1695.5
1695.7
1696.0
1696.2
1696.2
1696.3
1696.3
1696.4
1696.4
1696.4
1696.6
1696.7
1696.7
1696.7
1696.8
1696.8
1696.8
1697.0
1697.1

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
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Exercise

1. Collect data from any time series of your interest. Estimate an
AR(1) model with a deterministic trend in the following two different

ways:

Equation specification
E - Equation specification

Dependent variable followed )
d PDL terms, OR licit Dependent variable followed
an rms P and POL terms, OR an explid
trend+1 1
e iren ar(1) y ¢ @trend+1 y{-1)

(a) Compare the EViews output from the two methods. In particular,
show how you obtain the coefficient estimates from the 2nd figure
with the coefficient estimates from the 1st figure. Justify your answer
mathematically.

2. Repeat the same exercise but now with an AR(2) process making
the necessary arrangements on the EViews commands.

3. Obtain the general rule that relates the 2 methods for an
ARMA(p,q) process with trend.
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Difference-stationary processes |

Another way of modelling a nonstationary time series is to
consider a modified form of the ARMA model with the
autoregressive parameters not satisfying the stationary
conditions.

For example, consider the AR(1) process (¢o = 0 with no loss of
generality):
X = g1 Xe-1 + e, &0 "< (0,02)

This process is stationary if || < 1.

If o1 > 1 (¢1 < —1 is clearly unrealistic) both £(X;) and Var(X;)
are increasing functions of time and become infinite as { — cc.
You can recall the expressions for E(X;) and Var(X;) on the
slides from Chapter 2.

The same phenomenon occurs with general ARMA processes
where the (inverse) roots of the AR polynomial ¢(z) are (outside)
inside the unit circle.

Processes with these features are called explosive.
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Difference-stationary processes |l

o Explosive processes are very rare in economic and financial
time series and we will simply discard them.

¢ A very interesting and much more common case arises when
one or more than one of the AR polynomial roots are unity and
the others are outside the unit circle.

Definition (Unit Root)
If z=1is aroot of the AR polynomial, i.e., if z = 1 is a solution to the
equation:

‘qf)(z):1—qb1z—...—®pzp:0

then we say that the time series process X; has a unit root.

o Empirically, it is very frequent to find time series with
one unit root, z; = 1, and the others outside the unit circle,

|zo| > 1,..., |20 > 1.
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Difference-stationary processes Il

¢ Inthat case, X; is nonstationary but has a stationary and
invertible ARMA representation after taking first-differences.
To see this clearly suppose that X; follows the process:

[ &" (L)X = b0+ O(L)= | (6)
where 7y, ..., z, are the roots of ¢*(z) with zy = 1 and
z >1,...,2, > 1. Moreover assume that the roots of (z) are

outside the unit circle.

o Now if we factor the unit root from the polynomial ¢*(L), equation
(6) becomes:

[S(L)(1 = L)X = do + 0(L)e]

e Since 7, ..., z, are the roots from the polynomial ¢(z) and are

outside the unit circle, the first-differenced time series
AX; = (1 — L)X; has a stationary ARMA representation:

[ (L)AX: = go + 0(L)er
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Difference-stationary processes |V

¢ In theory, nothing prevents to have a process with d unit roots.

In that case, the original series X; is nonstationary but the

dth differenced series, AYX; is stationary and has a stationary

and invertible ARMA representation:

P(L)AYX; = o + O(L)et

(7)

e These processes are called Integrated Processes of Order d

(abbreviatedly, I(d) processes).

e The model in (7) is referred to as the Autoregressive Integrated

Moving Average model of order (p,d, q) and is denoted as the

ARIMA(p,d,q) model.
o Example: ARIMA(1,1,1)

Xy =12X;_1 —0.2X;_o +e¢ — 0.5¢4_1,

et < (0,02)
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Difference-stationary processes V

e The roots of the AR polynomial are zy = 1and zc =5 > 1. We
conclude that the process (8) follows an ARIMA(1,1,1) process
because:

1. X: is nonstationary due to one unit root (x; = 1).
2. AX; is stationary (d = 1) and follows an ARMA(1,1) process.

¢ To see point 2 clearly we can factor the AR polynomial in (8).

e Given that its roots are z; = 1 and z» = 5 we have that

A =2 =Tand )2 = 2 = 0.2 and so the factorization of ¢(L)

Zo -
becomes:

(1 —1.2L+0.2L2)X; = &t — 0.5¢;_1
@(1 — 02L)(1 — L)Xt =&t — 0.55t,1
@AX{ = 0.2AX1,1 + &t — 0.551‘,1 = AXt ~ ARMA(1 s 1)
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Difference-stationary processes VI

e If d > 1, we can also say that X; is difference-stationary
process.

Definition (Difference-stationary processes)
A process X; is difference-stationary or /(d) for d > 1, if:

(a) X: has d unit roots, d > 1.
(b) AYX; ~ stationary and invertible ARMA

o Some of the most popular difference-stationary processes are:
1. Random Walk (ARIMA(0,1,0) without constant)

Xi = Xi—1 + e, et < (0,0%) 9)

2. Random Walk with drift (ARIMA(0,1,0) with constant)

X = B+ X—1 +et, &1 < (0,07) (10)
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Difference-stationary processes Vi

Some time series, specially the ones related to the financial
sector, are well described by a random walk or a random walk
with drift.

However, in many circunstances after taking first differences, we
find that the sample ACF and PACF of A X; do not have a
“white-noise" pattern but of some stationary and invertible
ARMA(p,q) process.
In that case the model that best fits the data is given by:

3. ARIMA(p,1,q)

H(L)AX; = do + O(L)et, et = (0,02) (11)

where the roots of ¢(z) and 0(z) are outside the unit circle.

In the following slides, we present more details about the
properties of the Random Walk with and without drift.

The knowledge of these properties is useful for a complete
understanding of the unit root tests.
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Random Walk |

o A Random Walk is a time series process defined by the following

equation:

X;=Xe—1 +er, e ' (0,07)

€

e To analyse the properties of the Random Walk, it is useful to

(12)

write equation (12) as a function of the initial value, X, and the

shocks:

t
Xe=Xo+er+...+er=Xo+ ) &
i

Properties of the random walk
o Expected value of X;:

E(X:) =Xo

e Variance of X;:

Var(X;) = to?
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Random Walk Il

Autocovariances of X;:

Ytk = COV(Xt,X[,k) = (t — k)(fz

g

Autocorrelations of X;:

o X — GO Xew) [T
P Lo VVar(X) - Var(X_x) t

Initially, for low values of k, the autocorrelation function is
approximately equal to 1.

As k increases, the autocorrelation function decays very slowly.
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Simulated sample of a random walk

Graph and correlogram of a simulated random walk with

i.d

Xi = Xi_1 +et, Xo = 0er '~° N0, 1)

Sample: 1500
Included obsenvations: 500
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0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
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Graph and correlogram of the first-differences, AX; = X; — X;_4
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0.045
-0.004
-0.070
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0.047
-0.010
0.057
0.032
-0.049
0.006
-0.004
0.012
-0.007
0.017
-0.001

-0.028
-0.054
-0.052
-0.033
-0.042
0.034
0.039
-0.029
0.001
0.020
0.006
0.039
-0.027
0.040
-0.003
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-0.037
0.007
-0.053
0.015
0.032
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-0.057
0.038
-0.055
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-0.015
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-0.040
0.015
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0.005
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0.6537
2.0457
3.2156
3.5659
4.1428
5.0843
5.9888
6.5045
6.5077
6.6686
6.6710
7.3495
77111
8.3432
8.4054
11.556
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12332
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14.658
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21186
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24786
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0.419
0.380
0.380
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0.529
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0.541
0.591
0.688
0.756
0.825
0.834
0.862
0.871
0.907
0.774
0.794
0.830
0.825
0.851
0.840
0.876
0.797
0.786
0.746
0.732
0.775
0.736
0.754
0.737
0.778
0.815
0.845
0.873
0.894
0.915
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Random walk with drift

o A random walk with drift is a time series process defined by the
following equation:

Xi =B+ X1+ e, StN (OO’)

e To study the properties of this process, we write equation (14) as
a function of the deterministic term and the random shocks:

t
Xi=Xo+B+er+...+B+er=Xo+pBt+) &
i=1

Properties of the random walk with drift
e Expected value of X;:

|E(X:) = Xo + Bt

o Variance, autocovariances and autocorrelations equal to the
random walk.
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Simulated sample of a random walk with drift

Graph and correlogram of a simulated random walk with drift with
X; =05+ X_1 +er, Xo =0 %7 N, 1)

240 Partial Correlation AC  PAC O-Stat Prob

0.994 0994 497.40 0.000
| 0.989 -0.007 99016 0.000
' 0.983 0.005 14784 0.000
' 0.978 -0.006 19620 0.000
' 0972 -0.006 244114 0.000
' 0.966 -0.003 28156 0.000
' 0.961 0.002 33855 0.000
' 0.955 -0.007 3851.0 0.000
' 0.949 -0.011 43113 0.000
' 10 0.944 -D.012 4767.9 0.000
' 11 0.938 -D.006 5219.3 0.000
' 12 0.932 -D.006 56659 0.000
' 13 0.926 0.003 6107.8 0.000
' 14 0.920 0.004 65452 0.000
' 15 0.914 -D.006 6978.0 0.000
I 16 0.909 0.004 7406.2 0.000
' 17 0.903 -0.004 7830.0 0.000
' 18 0.897 0.004 82494 0.000
' 19 0.892 -D.008 8664.3 0.000
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

Cmuoma W

20 0.886 0.000 90748 0.000
21 0.880 -0.002 9430.9 0.000
22 0.875 -0.015 98826 0.000
23 0.869 0.000 10280. 0.000
24 0.863 0.005 10673. 0.000
25 0.858 -0.000 11061. 0.000
26 0.852 -0.006 11445 0.000
27 0.846 -0.010 11825 0.000
28 0.840 -0.002 12201. 0.000
29 0.835 0.000 12572 0.000
30 0.829 -0.003 12939, 0.000
31 0.823 0.000 13302 0.000
32 0.818 -0.008 13661. 0.000
33 0.812 -0.006 14015 0.000
34 0.806 -0.004 14365. 0.000
35 0.801 0.008 14711. 0.000

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
' 36 0795 -0.011 15053. 0.000
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Graph and correlogram of the first-differences, AX; = X; — X;_4

Autocorrelation Partial Correlation
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-0.036
-0.053
-0.048
-0.026
-0.034
0.043
0.042
-0.032
-0.003
0.018
0.002
0.036
-0.027
0.035
-0.011
-0.078
-0.033
0.021
-0.042
0.025
0.045
-0.004
-0.070
0.046
-0.056
0.047
-0.010
0.057
0.032
-0.049
0.006
-0.004
0.012
-0.007
0.017
-0.001

-0.036
-0.054
-0.052
-0.033
-0.042
0.034
0.039
-0.029
0.001
0.020
0.006
0.039
-0.027
0.040
-0.003
-0.079
-0.037
0.007
-0.053
0.015
0.032
0.002
-0.057
0.038
-0.055
0.048
-0.015
0.058
0.049
-0.040
0.015
-0.010
0.005
-0.007
0.004
-0.003

0.6537
20457
3.2156
35659
41428
50843
59888
6.5045
6.5077
6.6686
6.6710
7.3495
77111
8.3432
8.4054
11.556
12105
12.332
13.257
13.581
14.658
14.667
17.237
18.342
20.015
21.186
21.242
22948
23.488
24762
24779
24786
24858
24885
25.035
25.035

0.419
0.360
0.360
0.468
0529
0533
0.541
0.591
0.688
0.756
0825
0834
0.862
0.871
0907
0774
0.794
0.830
0825
0.851
0.840
0.876
0797
0.786
0.746
0732
0.775
0.736
0.754
0.737
0.778
0815
0.845
0873
0.894
0915
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Trend-stationary versus difference-stationary
processes” (Optional)

¢ In the previous slides we presented two different classes of non
stationary time series models: trend-stationary and
difference-stationary processes.

e But why is it so important to analyse if the series of interest is
trend-stationary or difference-stationary?

¢ In the next slides, we motivate the importance of this distinction
with simple examples.

o Finally, we introduce the unit root tests that allow the
practitioner to classify a time series as stationary,
trend-stationary or difference-stationary with formal statistical
inference methods.
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Trend-stationary versus difference-stationary

processes: why does it matter?* (Optional) |

e Suppose that X; is a trend-stationary process. For example,
suppose it follows the following model:

X; = o+ Bit+er, e < (0,02) (13)

o To transform X; into a stationary series we need to remove the
linear trend with a regression of X; on a constant and .

e The detrended series are the residuals from that regression.
e Suppose now that X; is a difference-stationary process. For
example, suppose it follows a random walk with drift:

Xf:€19+X[,1 —‘—Et, Et WfJ’- (0,0’?) (14)

e Here X; is transformed into a stationary series by
first-differencing, A X;.

e The use of the wrong transformation can generate serious
problems and lead to misleading inferences for the subsequent
econometric analysis.
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Trend-stationary versus difference-stationary

processes: why does it matter?* (Optional) I|
e Suppose that we wrongly apply first differences to a series
generated by equation (13). This transformation will introduce
artificial autocorrelation in the error term.
e In particular, the transformed series A X; will display a non
invertible MA component with a unit root on the MA polynomial.

‘ AXi =1 +er — i1

e Suppose now that we wrongly detrend X; to a series generated
by the process (14). In that case the resulting detrended series
will be nonstationary or, at least, highly persistent since:

Xi — E(X;) = Zg,

i=1

o Naturally, this is a concern because we don’t know in practice if
the time series is trend-stationary or difference-stationary and
consequently which transformation to use.

28/54



Dickey-Fuller test |

e Suppose that X; follows the process:

Xi = 01 X1+, e ' (0,02) )

e X; has aunitrootif o1 =1 or ¢(1) =1 — ¢ = 0. Then the null
hypothesis is Hp : ¢1 = 1 against the stationary alternative
Hi =1 <o < 1.

¢ In practice, it is not realistic to have ¢y < —1 and we will not be
worried with this region of ¢;. The alternative hypothesis is then
stated as H; : ¢ < 1.

o A more convenient formulation is to rewrite the null hypothesis as
a function of ¢(1). Subtract both sides of equation (15) by X;_1:

‘AX[:T('X[_1+81“ (16)

where 7 = ¢1 — 1 = —¢(1) is the AR polynomial evaluated at
z=1.
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Dickey-Fuller test Il

e The attraction of setting up the model in this way is that this
equation format generalizes directly to higher order
autoregressive processes (see slides 50 and 51).

e The null and alternative hypothesis are now stated as:

Hy:7w=0 wversus H1:7r<0‘

e Hence, to apply the test we estimate the statistical model (16)
and use the Dickey-Fuller (DF) statistic which is simply the t-ratio
of Ho:

b= (17)

=
oz

where 7 is the estimate of = obtained from regression (16).

¢ Notice that X; has a unit root under Hy. This implies that the test
statistic t; does not follow any standard distribution such as ¢ or
N(0,1). It follows the so-called Dickey-Fuller distribution
whose critical values are presented in Table 1.
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Dickey-Fuller test I
¢ Another point worth noticing is the restriction on the deterministic
component imposed by the statistical model in (15).

e In particular, X; is a random walk under the unit root null

hypothesis, Hy : 7 = 0:

which implies that E(X;) = Xo.
o But under the stationary alternative hypothesis, H; : 7 < 0, X;
follows an AR(1) process without constant:

‘Xt:<f)1Xt—1 +e, o<1

which means that £(X;) = 0.

o We conclude that the eventual rejection of H, favours a statistical
model which restricts the unconditional mean to be equal to 0,
E(X;) = 0.

e This fact is rarely observed in a real economic time series data
and so this version of the DF statistic is rarely applied in practice.
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Dickey-Fuller test with constant |

¢ In practice, we always include deterministic variables (constant
and/or trends) in the statistical model since, in general,
E(X;) # 0.

o For example, if we add a constant to the process in (16), the
Dickey-Fuller regression becomes:

AX; = Bo+ X1 +er, e "~ (0,02) (18)

o As before the unit root null hypothesis and the stationary
alternative are defined as Hp : m = 0 and H; : m < 0, respectively.
The Dickey-Fuller (DF) statistic is obtained as:

(19)

t =

SUEN

where 7 is the estimate of = obtained from regression (18).
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Dickey-Fuller test with constant |l

e The presence of the constant term in regression (18) changes
the asymptotic distribution. The critical values are reported in
Table 1.

o As regards to the deterministic components, under the null
hypothesis, Hy : 7 = 0, X; follows a random walk with drift:

‘ Xt = Bo+ Xi—1 +¢¢

which means that we are allowing for the presence of a linear
deterministic trend E(X;) = Xy + Sot.

e On the other hand, under the stationary alternative, H; : 7 < 0,
X; follows an AR(1) process with constant:

‘X[:,80+©1Xt71 +en o<1 ‘

which allows the unconditional mean to be different from 0 but

restricts to be constant over time £(X;) = 4 fgﬁ .
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Dickey-Fuller test with constant |l

e The choice of the appropriate version of the unit root test is very
important because the application of the “wrong" test may lead
to misleading statistical inference.

e In this case, if the time series is trend-stationary, the t: statistic is
very likely not to reject Hy and misleads the practitioner to
conclude for the presence of a unit root.
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Dickey-Fuller test with a linear trend |

Many times by visual inspection or by economic intuition we may
suspect that the time series has a linear time trend.

In that situation we are doubtful whether X; has a unit root or is
trend-stationary.

To avoid misleading inferences, we should include a deterministic
trend to the Dickey-Fuller regression:

AX; = Bo+ Bit+7Xi_1 +er, e < (0,02) (20)

The unit root null and the no unit root alternative hypothesis are
unchanged and given by Hy : # = 0 and H; : = < 0, respectively.
The Dickey-Fuller (DF) statistic is obtained as the usual t-ratio:

tr = — (21)

=
oz

where 7 is the estimate of = obtained from regression (20).
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Dickey-Fuller test with a linear trend |l
¢ Again the presence of a linear time trend shifts the asymptotic
distribution. The critical values are presented in Table 1.
e The presence of a linear trend in the regression (20) again
changes the assumption about the unconditional mean of X:.
o Under the null hypothesis Hp : # = 0, X; follows a random walk

with a linear trend. Here the term 3;t is accumulated to produce
a quadratic trend in the unconditional mean of X;:

‘X,:;6’0+/31t+X,,1 + &t

that yields £ (X;) = o + p1t + upt? where 1o, 111 and o are
functions of 5y and j;.

o Under the alternative hypothesis, H; : m < 0, X; obeys an AR(1)
process with a linear trend:

Xt = Bo+ Bt + g1 X1+, o<1 ‘

which delivers a time trend in the mean E (X;) = ag + a4t where
ag, aq are functions of 5y, 51 and ¢.
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Dickey-Fuller distributions

~~DF with a linear trend. 7,

04f

0.3

0.1

DF with a constant. T_

-4 -3 2 -1

L L
1 2 3 -

Deterministic components

Significance level

in the regression 10% 5% 1%
No deterministic component | -1.62 -1.94 -2.57
Constant -2.57 -2.87 -3.44
Constant+trend -3.13 -3.42 -3.98

Table 1: Critical values from the

Dickey-Fuller tests
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DF test with no deterministics, intercept or trend
and intercept? |

« As argued before the DF statistic with
no deterministics should not be used in applied work
unless there is a very good reason to suspect that the
mean of the process X; is equal to zero, E(X;) = 0.

« The question now is how to decide between intercept
and trend+intercept.

« Economic reasoning does not allow some time
series to grow continuously over time: unemployment
rate, inflation, financial returns, exchange rates,
interest rates,. . .. This should be confirmed by
visual inspection of the graph.
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DF test with no deterministics, intercept or trend
and intercept? |l

« In this case, it does not make sense to allow for a
linear time trend and the DF test with intercept only
should be applied.

« The same economic reasoning and/or
visual inspection permits that the time series of
interest grows over time due to, e. g., inflation or
technological progress: variables in nominal terms,
prices, consumption, GDP,. ..

« In that case, we should allow for the presence of a
linear trend and apply the test with
trend and intercept.
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Unit root tests for AR(p) processes |

o All the Dickey -Fuller tests assume that the errors are white-noise
Et N (0 [ ) .
e Clearly, for many time series 1 lag as in regressions (16), (18) or

(20) is insufficient and tipically we include a sufficient number of

lags to ensure that =; "< (0, 5?). In that case, how can we apply
the unit root tests?

e For ilustration purposes, consider an AR(2) process without
deterministic terms:

‘ Xt = o1 Xi—1 + o Xi—2 + &4

(22)

e The process X; has a unit root if ¢(z) =1 — ¢1z — ¢»2° has a
rootatz=1,ie,ifd(1)=1—0¢1 — 2 =05 1 + ¢ = 1.

e A possible route would be to estimate the model (22) and test the
restriction ¢4 + ¢o = 1.
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Unit root tests for AR(p) processes ||

e However, it is more convenient to rewrite equation (22) such that
T = o1+ ¢2 — 1 is a parameter of the model. Using
¢1 =7 — ¢o + 1 we have:

Xi =1 Xe—1 + d2Xe—2 + &t
S X =(m— g2+ 1) X1 + p2 Xt 2 + &4
& Xt — X1 = Xi1 — 2 Xp 1+ 92X 2+ &t
& AX; =1 Xi—1 + 5 AXi—1 + ¢

where 7 = —¢(1) = ¢1 + ¢o — 1 and 61 = —¢p.
o |tis possible to show that the general AR(p) process is rewritten
as:

AXy = Bo + Bt + aXi—1 +01AXi—1+ ...+ 5p,1AX[,p+1 +&¢

where m = —¢(1) =1+ ...+ ¢p— T and d1,...,0p_1 are
parameters that depend on ¢1, ..., ¢p.
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Unit root tests for AR(p) processes |l

X; has a unit root if 1 + ... + ¢p = 1. Hence, the null hypothesis
is Hy : m = 0 and the no unit root alternative is H; : 7 < 0.

The test is again the t-ratio for Hy and is denoted as
Augmented Dickey-Fuller test (ADF).

The critical values are the same as for the Dickey-Fuller test that
are reported in Table 1.
Choice of the number of lags, p:

1. General-to-specific testing: start with a high lag length value kpax.
Remove the longest lag if statistical insignificant and reestimate the
model. Repeat this process until the longest lags is statistical
significant.

2. Information criteria: AIC, BIC ou HQ.

For both metholodogies, one should never forget to verify if the
model is well specified. In particular, one should perform
residual diagnostic checks (ACF, Q statistics,. . .) to ensure that
the errors are “white-noise".
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Limitations of the ADF tests* (Optional) |

e The unit root tests can have very low power, i.e., the probability
of rejecting the unit root null, Hy, when Hjy is true (X; has a unit
root) can be quite low.

e This problem can become particularly serious when:

1. we have a small sample size (T < 100).

2. the inverse roots of the AR polynomialare very close to the unit
circle (for example, ¢1 = 0.95 in an AR(1) process). This seems to
be a very common phenomena with macroeconomic data.

3. when irrelevant regressors are included specially, linear trends,
slope dummies or to many lags (AX;_)

e There is an immense amount of research about unit root tests.

e Nelson & Plosser (1983) was the first published work to study if
macroeconomic time series are classified as
difference-stationary, trend-stationary or stationary processes.

e They conclude that the most important U.S. macroeconomic time
series are well characterized by unit root processes (with or
without drift) and so without any mean reverting behaviour.
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Limitations of the ADF tests* (Optional) Il

Table 5
Tests for autoregressive unit roots*
R A s R A )iy

Series T & 3 ) 7 ) b i) n
Real GNP 62 2 0819 303 0.006 303 0825 0058 —002
Nominal GNP 2 2 106 237 0006 34 0899 0087 003
Real per

capita GNP 62 2 128 305 0004 301 0818 0059 - 5.02
Industri

production 6 0103 432 0007 244 0835 | -253 (0097 003
Employment 81 3 142 268 0002 254 0861 | —266 (0035 0.0
Uncmployment

rate 81 4 0513 281 —0000 -023 0706 | —3.55* (0407 0.02
GNP deflator 82 2 0260 255 0.002 265 0915 | -252 (0046 -0.03
Consumer prices " 4 00% 176 0001 284 098 | —197 ow —006
Wages n o3 0566 230 0004 230 0910 | -209 000
Real no2 0.487 310 0.004 314 0831 | -304 0 034 —0.01
Money stock 82 2 0133 35 0005 303 0916 | —308 (0047 003
Velocity 102 1 0052 0.99 ~0000 —065 0941 ~1.66 0067 011
Interest rate 73 -018 -095 0003 175 103 0686 (0283 —002
‘Common stock

prices. 100 3 0481 202 0003 237 0913 \;z os/n 158 020

“z, represents the natural logs of ancual data except for the bond yicld. ((4) and «(7) are the ratios of the OLS estm.ates of e and ; to their
respective standard errors. 1(g,) is the ratio of 4, ~1 to its standard error. (i) is the standard error of the regression and r, is the first-order
autocorrelation coefficient of the residuals. The values of t(4,) denoted by an (*) are smaller than the 0.05 one tail critical value of the distribution
of w4,) ard foi 3, 11 should also be noted tisat #() and 1(7) are not distributed as normal random variables.

e According to Google Scholar, this paper has been quoted 4783
vezes until today.

¢ A high proportion of these citations represent new unit root tests
that contradict or reinforce the NP conclusions.

54/56



Limitations of the ADF tests* (Optional) Il

o This fact shows that the unit root inference problem is very
important but also very complicated or even impossible to solve.
The most important developments regarding more powerful and
robust unit root tests are the following (available in EViews):

1. ERS Tests developed by Elliot, Rothemberg e Stock (1996).

2. NG and Perron tests developed by Serena Ng and Pierre Perron
(2001).
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