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Introduction
• Until now, we either assumed that the time series of interest was

stationary (ARMA models) or that a simple transformation (logs,
first-differences) was enough to stationarize the time series.

• However, many economic and financial time series are clearly
not stationary and so given the importance of this feature we
reserve this set of slides to provide a more detailed and
structural analysis to this problem.

• Hence, the objective of this group of slides is to:
(a) Identify the consequences of ignoring the stationary

problem. The most hazardous case – the spurious
regression problem – is analyzed in some detail.

(b) Present the most typical deviations from the stationary
assumption in economic/financial time series and the
appropriate transformation.

(c) Explain the reasons that make each transformation so
effective, in particular, the log or the first-difference
transformation.

(d) Explain the logic of unit root tests and how this class of
statistics can be used to test if a time series is stationary or
nonstationary in the mean (unit root/trend stationary).

2/56



The spurious regression problem I

• The researcher has to be very cautious with the econometric
analysis of nonstationary time series .

• If the nonstationarity of the time series is ignored then:
(a) The estimators of the linear regression model may be

inconsistent and even divergent. Moreover, the standard
(normal) critical values of the usual t, F, LM statistics are not
correct anymore.

(b) The forecast accuracy of the model may be seriously
affected.

• We ilustrate item (a) using a simple but somewhat shocking
example with real time series data.

• What happens when we run a linear regression model between
variables with a unit root?
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The spurious regression problem II

• Consider two presumably uncorrelated variables:
- CONSt : Real private consumption
- CORVMt : number of breeding cormorants
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The spurious regression problem III

• Consider the following static regression:

log(CONSt ) = β0 + β1log(CORVMt ) + εt (1)

• Naturally β1 = 0 and, hopefully, we obtain R2 ≈ 0, β̂1 ≈ 0 and a
very low value of tβ̂1

.

• With real Danish data, we estimate the static regression in (1)
and obtain the following result:

log(CONSt ) = 12.145 + 0.095log(CORVMt ) + ε̂t

• tβ̂0
= 80.90, tβ̂1

= 6.30 and R2 = 0.688!
• The model suggests a clear positive relation between the

number of birds and aggregate consumption!
• Furthermore, the number of birds can account for a large

proportion of the variation in consumption!
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The spurious regression problem IV
• The model seems to be perfectly adequate to explain the

Denmark cosumption behaviour but this is obviously a totally
absurd result/regression!

(a) Plot of log(CONSt ) and log(CORVMt )
(b) Residuals from the regression of
log(CONSt ) on log(CORVMt )

• From visual inspection of the time series plot and unit root tests
(not reported here), we conclude that both time series have a
unit root.

• The presence of a unit root generates these meaningless results.
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The spurious regression problem V

• This set of results is known as the spurious regression
problem. It occurs when the variables of the model are
nonstationary in the mean.

• In general, no matter the relevance of the model, a static
regression between unit root variables will result in:
(a) OLS estimators with high and statistically significant tβ̂j

,
j = 1, . . . , k .

(b) Very high R2 and close to 1.
(c) Very low Durbin-Watson (DW) statistic and close to 0.

Important Warning 1

This is a very important problem but the inconsistency of the
estimators only holds for static regressions.
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The spurious regression problem VI

Important Warning 2

⇒ Dynamic models such as ARIMA or regressions with lagged
dependent or independent variables provide inefficient but
consistent estimators even if the nonstationarity is ignored or
not properly modelled.

⇒ The standard statistical inference tools – t, F, LM tests – do
not have standard normal distributions and, in particular, the
p-values provided by EViews are totally incorrect which
restricts considerably the statistical analysis of the model.
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Nonstationarity types I

• The theory underlying the class of ARMA models relies on the
assumption that the time series process, Xt , is stationary:

E (Xt ) = µ <∞ , i. e., constant over time

Var (Xt ) = E
[
(Xt − µ)2

]
= γ0 <∞ , i. e., constant over time

Cov (Xt ,Xt−k ) = E [(Xt − µ) (Xt−k − µ)] = γk , i. e., constant over time

• However, most observed economic and financial time series do
not seem to be well characterized as a stationary process which
poisons the reliability of the results.

• Fortunately, there are models that can be constructed to describe
the many different ways that a time series can be nonstationary.

• These models also show how the nonstationarity problem may
be treated in practical applications, in particular, how to transform
a nonstationary time series into a stationary one.
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Nonstationarity types II

• The time series can be nonstationary in many different ways, and
we present the most typical deviations from the stationary
assumption in financial/economic time series:

1. Nonstationarity in variance
2. Nonstationarity in mean: Linear deterministic trends and

stochastic trends
• Identifying the nature of nonstationarity in the time series is an

essential step for a correct subsequent data analysis.
• The main challenge is that each form of nonstationarity demands

a different transformation.
• The application of an unnecessary or wrong transformation may

have detrimental effects in the statistical properties of the
econometric model and forecast performance.
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Nonstationarity in variance∗ (Optional) I
• Many time series have nonconstant variance and it is very

common for the variance to change as its level, µt , changes:

Var (Xt ) = cf (µt ) (2)

for some c > 0 and a function f .
• We want to find a transformation, T , that renders a new series,

T (Xt ), with constant variance.
• The form of the transformation can be obtained with a first order

Taylor approximation argument. We start by approximating T (Xt )
about the point µt which gives that:

T (Xt ) ≈ T (µt ) + T ′(µt ) (Xt − µt ) (3)

• According to equations (2) and (3), we have that the variance of
the transformed series can be approximated by:

Var [T (Xt )] ≈ c [T ′ (µt )]
2 f (µt )
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Nonstationarity in variance∗ (Optional) II
• Thus, to stabilize the variance, the transformation must be

choosen such that:

T ′ (µt ) =
1√

f (µt )

or, in other words:

T (µt ) =

∫
1√

f (µt )
dµt

• For example, if the standard deviation is proportional to the level
so that Var (Xt ) = c2µ2

t , we have:

T (µt ) =

∫
1√
µ2

t

dµt = ln (µt )
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Nonstationarity in variance∗ (Optional) III

• In general, we may use the Box-Cox power transformation:

T (Xt ) =
Xλ

t − 1
λ

• Tipical values of λ are −1,−0.5,0.5 and 1. If λ→ 0,
T (Xt ) = ln (Xt )

• In fact, the most used transformation is the
logarithm transformation.
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Nonstationarity in mean – trend-stationary models
I

• Many economic time series are not in accordance with the
constant mean assumption as they have a tendency to
systematically increase or decrease over time.

• One way to describe this pattern is to have a model where the
mean is not constant but instead follows a linear trend or even a
polynomial trend:

Xt = β0 + β1t + ut

Xt = β0 + β1t + +β2t + . . .+ βptp + ut

where ut is a zero mean stationary process.
• Quadratic or higher order polynomial trends are very rare in

economic/financial time series data and so we focus on models
with a linear deterministic trend.
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Nonstationarity in mean – trend-stationary models
II

• To complete the description of the model and to make it useful in
practice, we have to be more concrete as regards to the
stochastic part of the model, ut .

• In theory, the most simple case is a model where the stochastic
component, ut , follows a white-noise process:

Xt = β0 + β1t + ut , ut
w.n.∼

(
0, σ2

u
)

(4)

• However, in practical applications, it is almost unrealistic to have
a time series in which the deviations from the trend, Xt −β0−β1t ,
follow a white noise process. Time dependence is a proeminent
phenomenon as we constantly emphasize during the course.
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Nonstationarity in mean – trend-stationary models
III

• The most common situation is to find some pattern in the
ACF/PACF of the detrended variable, Xt − β0 − β1t , that suggests
a stationary and invertible ARMA representation for the
detrended variable:{

Xt = β0 + β1t + ut

φ(L)ut = θ(L)εt , εt
w.n.∼

(
0, σ2

ε

) (5)

where φ(L) = 1− φ1L− . . .− φpLp and
θ(L) = 1− θ1L− . . .− θqLq . Moreover, the roots of the
polynomials φ(z) and θ(z) are outside the unit circle.

• This model representation may seem awkward but it is possible
to show that the process (5) can be written in the usual ARMA
representation but with a linear trend in the deterministic
component:

φ(L)Xt = α0 + α1t + θ(L)εt

where α0 = β0φ (1) + β1
∑p

j=1 jφj and α1 = β1φ (1).
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Nonstationarity in mean – trend-stationary models
IV

• For both models (4) and (5), it should be clear that the mean
changes over time E(Xt ) = β0 + β1t since E(ut ) = 0.

• The detrended time series, Xt − E (Xt ) = Xt − β0 − β1t is a
stationary and invertible process given that the roots of the
polynomials φ(z) and θ(z) are outside the unit circle.

• A time series process with the two features described above is
called a trend-stationary process.

Definition (Trend-stationary processes)
A time series process is trend-stationary if:

(a) E (Xt ) is a function of time, E (Xt ) = f (t) and, in general,
E (Xt ) = β0 + β1t with β0 > 0 and β1 > 0, i. e., the unconditional
mean grows linearly over time.

(b) Xt − E (Xt ) ∼ stationary and invertible ARMA
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Nonstationarity in mean – trend-stationary models
V

• It is immediate that both models (4) and (5) are
trend-stationary processes.

• Naturally, in practice we don’t know neither the true values of β0
and β1 (needed to obtain Xt − β0 − β1t) nor the theoretical ACF
and PACF of the detrended process.

• Hence, we obtain sample estimates of β0 and β1 with the
following linear regression model estimated by OLS:

Xt = β0 + β1t + ut

and proceed with the analysis of the sample ACF/PACF of the
residual series ût = Xt − β̂0 − β̂1t .

• We then use the Box Jenkins methodology to choose the orders
q and p.

18/56



Simulated sample of a trend-stationary process
Graph and correlogram of a trend-stationary process with

Xt = 2 + 0.01t + 0.9Xt−1 + ut , ut
i.i.d∼ N(0, 1)
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Graph and correlogram of the detrended series ût = Xt − β̂0 − β̂1t
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Exercise
1. Collect data from any time series of your interest. Estimate an

AR(1) model with a deterministic trend in the following two different
ways:

(a) Compare the EViews output from the two methods. In particular,
show how you obtain the coefficient estimates from the 2nd figure
with the coefficient estimates from the 1st figure. Justify your answer
mathematically.

2. Repeat the same exercise but now with an AR(2) process making
the necessary arrangements on the EViews commands.

3. Obtain the general rule that relates the 2 methods for an
ARMA(p,q) process with trend.
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Difference-stationary processes I

• Another way of modelling a nonstationary time series is to
consider a modified form of the ARMA model with the
autoregressive parameters not satisfying the stationary
conditions.

• For example, consider the AR(1) process (φ0 = 0 with no loss of
generality):

Xt = φ1Xt−1 + εt , εt
w.n.∼

(
0, σ2

ε

)
• This process is stationary if |φ1| < 1.
• If φ1 > 1 (φ1 < −1 is clearly unrealistic) both E(Xt ) and Var(Xt )

are increasing functions of time and become infinite as t →∞.
You can recall the expressions for E(Xt ) and Var(Xt ) on the
slides from Chapter 2.

• The same phenomenon occurs with general ARMA processes
where the (inverse) roots of the AR polynomial φ(z) are (outside)
inside the unit circle.

• Processes with these features are called explosive.
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Difference-stationary processes II

• Explosive processes are very rare in economic and financial
time series and we will simply discard them.

• A very interesting and much more common case arises when
one or more than one of the AR polynomial roots are unity and
the others are outside the unit circle.

Definition (Unit Root)
If z = 1 is a root of the AR polynomial, i.e., if z = 1 is a solution to the
equation:

φ(z) = 1− φ1z − . . .− φpzp = 0

then we say that the time series process Xt has a unit root.
• Empirically, it is very frequent to find time series with

one unit root, z1 = 1, and the others outside the unit circle,
|z2| > 1, . . . , |zp| > 1.
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Difference-stationary processes III
• In that case, Xt is nonstationary but has a stationary and

invertible ARMA representation after taking first-differences.
To see this clearly suppose that Xt follows the process:

φ∗(L)Xt = φ0 + θ(L)εt (6)

where z1, . . . , zp are the roots of φ∗(z) with z1 = 1 and
z2 > 1, . . . , zp > 1. Moreover assume that the roots of θ(z) are
outside the unit circle.

• Now if we factor the unit root from the polynomial φ∗(L), equation
(6) becomes:

φ(L)(1− L)Xt = φ0 + θ(L)εt

• Since z2, . . . , zp are the roots from the polynomial φ(z) and are
outside the unit circle, the first-differenced time series
∆Xt = (1− L)Xt has a stationary ARMA representation:

φ(L)∆Xt = φ0 + θ(L)εt
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Difference-stationary processes IV

• In theory, nothing prevents to have a process with d unit roots.
In that case, the original series Xt is nonstationary but the
dth differenced series, ∆dXt is stationary and has a stationary
and invertible ARMA representation:

φ(L)∆dXt = φ0 + θ(L)εt (7)

• These processes are called Integrated Processes of Order d
(abbreviatedly, I(d) processes).

• The model in (7) is referred to as the Autoregressive Integrated
Moving Average model of order (p,d,q) and is denoted as the
ARIMA(p,d,q) model.

• Example: ARIMA(1,1,1)

Xt = 1.2Xt−1 − 0.2Xt−2 + εt − 0.5εt−1, εt
w.n.∼ (0, σ2

ε) (8)
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Difference-stationary processes V

• The roots of the AR polynomial are z1 = 1 and z2 = 5 > 1. We
conclude that the process (8) follows an ARIMA(1,1,1) process
because:

1. Xt is nonstationary due to one unit root (x1 = 1).
2. ∆Xt is stationary (d = 1) and follows an ARMA(1,1) process.

• To see point 2 clearly we can factor the AR polynomial in (8).
• Given that its roots are z1 = 1 and z2 = 5 we have that
λ1 = 1

z1
= 1 and λ2 = 1

z2
= 0.2 and so the factorization of φ(L)

becomes:

(1− 1.2L + 0.2L2)Xt = εt − 0.5εt−1

⇔(1− 0.2L)(1− L)Xt = εt − 0.5εt−1

⇔∆Xt = 0.2∆Xt−1 + εt − 0.5εt−1 =⇒ ∆Xt ∼ ARMA(1,1)
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Difference-stationary processes VI
• If d ≥ 1, we can also say that Xt is difference-stationary

process.

Definition (Difference-stationary processes)
A process Xt is difference-stationary or I(d) for d ≥ 1, if:

(a) Xt has d unit roots, d ≥ 1.
(b) ∆d Xt ∼ stationary and invertible ARMA

• Some of the most popular difference-stationary processes are:
1. Random Walk (ARIMA(0,1,0) without constant)

Xt = Xt−1 + εt , εt
w.n∼ (0, σ2

ε) (9)

2. Random Walk with drift (ARIMA(0,1,0) with constant)

Xt = β + Xt−1 + εt , εt
w.n∼ (0, σ2

ε) (10)
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Difference-stationary processes VII
• Some time series, specially the ones related to the financial

sector, are well described by a random walk or a random walk
with drift.

• However, in many circunstances after taking first differences, we
find that the sample ACF and PACF of ∆Xt do not have a
“white-noise" pattern but of some stationary and invertible
ARMA(p,q) process.

• In that case the model that best fits the data is given by:
3. ARIMA(p,1,q)

φ(L)∆Xt = φ0 + θ(L)εt , εt
w.n∼ (0, σ2

ε) (11)

where the roots of φ(z) and θ(z) are outside the unit circle.

• In the following slides, we present more details about the
properties of the Random Walk with and without drift.

• The knowledge of these properties is useful for a complete
understanding of the unit root tests.
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Random Walk I

• A Random Walk is a time series process defined by the following
equation:

Xt = Xt−1 + εt , εt
w.n.∼ (0, σ2

ε) (12)

• To analyse the properties of the Random Walk, it is useful to
write equation (12) as a function of the initial value, X0 and the
shocks:

Xt = X0 + ε1 + . . .+ εt = X0 +
t∑

i=1

εi

Properties of the random walk
• Expected value of Xt :

E(Xt ) = X0

• Variance of Xt :
Var(Xt ) = tσ2

ε
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Random Walk II

• Autocovariances of Xt :

γt,k = Cov(Xt ,Xt−k ) = (t − k)σ2
ε

• Autocorrelations of Xt :

ρt,k = Corr(Xt ,Xt−k ) =
Cov(Xt ,Xt−k )√

Var(Xt ) · Var(Xt−k )
=

√
t − k

t

• Initially, for low values of k , the autocorrelation function is
approximately equal to 1.

• As k increases, the autocorrelation function decays very slowly.
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Simulated sample of a random walk
Graph and correlogram of a simulated random walk with

Xt = Xt−1 + εt , X0 = 0 εt
i.i.d∼ N(0, 1)

31/56



Graph and correlogram of the first-differences, ∆Xt = Xt − Xt−1
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Random walk with drift
• A random walk with drift is a time series process defined by the

following equation:

Xt = β + Xt−1 + εt , εt
w.n.∼ (0, σ2

ε)

• To study the properties of this process, we write equation (14) as
a function of the deterministic term and the random shocks:

Xt = X0 + β + ε1 + . . .+ β + εt = X0 + βt +
t∑

i=1

εi

Properties of the random walk with drift
• Expected value of Xt :

E(Xt ) = X0 + βt

• Variance, autocovariances and autocorrelations equal to the
random walk.
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Simulated sample of a random walk with drift

Graph and correlogram of a simulated random walk with drift with

Xt = 0.5 + Xt−1 + εt , X0 = 0 εt
i.i.d∼ N(0, 1)
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Graph and correlogram of the first-differences, ∆Xt = Xt − Xt−1
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Trend-stationary versus difference-stationary
processes∗ (Optional)

• In the previous slides we presented two different classes of non
stationary time series models: trend-stationary and
difference-stationary processes.

• But why is it so important to analyse if the series of interest is
trend-stationary or difference-stationary?

• In the next slides, we motivate the importance of this distinction
with simple examples.

• Finally, we introduce the unit root tests that allow the
practitioner to classify a time series as stationary,
trend-stationary or difference-stationary with formal statistical
inference methods.
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Trend-stationary versus difference-stationary
processes: why does it matter?∗ (Optional) I

• Suppose that Xt is a trend-stationary process. For example,
suppose it follows the following model:

Xt = β0 + β1t + εt , εt
w.n.∼ (0, σ2

ε) (13)

• To transform Xt into a stationary series we need to remove the
linear trend with a regression of Xt on a constant and t .

• The detrended series are the residuals from that regression.
• Suppose now that Xt is a difference-stationary process. For

example, suppose it follows a random walk with drift:

Xt = β + Xt−1 + εt , εt
w.n.∼ (0, σ2

ε) (14)

• Here Xt is transformed into a stationary series by
first-differencing, ∆Xt .

• The use of the wrong transformation can generate serious
problems and lead to misleading inferences for the subsequent
econometric analysis.
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Trend-stationary versus difference-stationary
processes: why does it matter?∗ (Optional) II

• Suppose that we wrongly apply first differences to a series
generated by equation (13). This transformation will introduce
artificial autocorrelation in the error term.

• In particular, the transformed series ∆Xt will display a non
invertible MA component with a unit root on the MA polynomial.

∆Xt = β1 + εt − εt−1

• Suppose now that we wrongly detrend Xt to a series generated
by the process (14). In that case the resulting detrended series
will be nonstationary or, at least, highly persistent since:

Xt − E(Xt ) =
t∑

i=1

εi

• Naturally, this is a concern because we don’t know in practice if
the time series is trend-stationary or difference-stationary and
consequently which transformation to use.
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Dickey-Fuller test I

• Suppose that Xt follows the process:

Xt = φ1Xt−1 + εt , εt
w.n.∼ (0, σ2

ε) (15)

• Xt has a unit root if φ1 = 1 or φ(1) = 1− φ1 = 0. Then the null
hypothesis is H0 : φ1 = 1 against the stationary alternative
H1 : −1 < φ1 < 1.

• In practice, it is not realistic to have φ1 ≤ −1 and we will not be
worried with this region of φ1. The alternative hypothesis is then
stated as H1 : φ1 < 1.

• A more convenient formulation is to rewrite the null hypothesis as
a function of φ(1). Subtract both sides of equation (15) by Xt−1:

∆Xt = πXt−1 + εt (16)

where π = φ1 − 1 = −φ(1) is the AR polynomial evaluated at
z = 1.
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Dickey-Fuller test II
• The attraction of setting up the model in this way is that this

equation format generalizes directly to higher order
autoregressive processes (see slides 50 and 51).

• The null and alternative hypothesis are now stated as:

H0 : π = 0 versus H1 : π < 0

• Hence, to apply the test we estimate the statistical model (16)
and use the Dickey-Fuller (DF) statistic which is simply the t-ratio
of H0:

tπ̂ =
π̂

σ̂π̂
(17)

where π̂ is the estimate of π obtained from regression (16).
• Notice that Xt has a unit root under H0. This implies that the test

statistic tπ̂ does not follow any standard distribution such as t or
N(0,1). It follows the so-called Dickey-Fuller distribution
whose critical values are presented in Table 1.
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Dickey-Fuller test III
• Another point worth noticing is the restriction on the deterministic

component imposed by the statistical model in (15).
• In particular, Xt is a random walk under the unit root null

hypothesis, H0 : π = 0:

Xt = Xt−1 + εt

which implies that E(Xt ) = X0.
• But under the stationary alternative hypothesis, H1 : π < 0, Xt

follows an AR(1) process without constant:

Xt = φ1Xt−1 + εt , φ < 1

which means that E(Xt ) = 0.
• We conclude that the eventual rejection of H0 favours a statistical

model which restricts the unconditional mean to be equal to 0,
E(Xt ) = 0.

• This fact is rarely observed in a real economic time series data
and so this version of the DF statistic is rarely applied in practice.
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Dickey-Fuller test with constant I

• In practice, we always include deterministic variables (constant
and/or trends) in the statistical model since, in general,
E(Xt ) 6= 0.

• For example, if we add a constant to the process in (16), the
Dickey-Fuller regression becomes:

∆Xt = β0 + πXt−1 + εt , εt
w.n.∼ (0, σ2

ε) (18)

• As before the unit root null hypothesis and the stationary
alternative are defined as H0 : π = 0 and H1 : π < 0, respectively.
The Dickey-Fuller (DF) statistic is obtained as:

tπ̂ =
π̂

σ̂π̂
(19)

where π̂ is the estimate of π obtained from regression (18).
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Dickey-Fuller test with constant II
• The presence of the constant term in regression (18) changes

the asymptotic distribution. The critical values are reported in
Table 1.

• As regards to the deterministic components, under the null
hypothesis, H0 : π = 0, Xt follows a random walk with drift:

Xt = β0 + Xt−1 + εt

which means that we are allowing for the presence of a linear
deterministic trend E(Xt ) = X0 + β0t .

• On the other hand, under the stationary alternative, H1 : π < 0,
Xt follows an AR(1) process with constant:

Xt = β0 + φ1Xt−1 + εt , φ < 1

which allows the unconditional mean to be different from 0 but
restricts to be constant over time E(Xt ) = β0

1−φ1
.
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Dickey-Fuller test with constant III

• The choice of the appropriate version of the unit root test is very
important because the application of the “wrong" test may lead
to misleading statistical inference.

• In this case, if the time series is trend-stationary, the tπ̂ statistic is
very likely not to reject H0 and misleads the practitioner to
conclude for the presence of a unit root.

44/56



Dickey-Fuller test with a linear trend I

• Many times by visual inspection or by economic intuition we may
suspect that the time series has a linear time trend.

• In that situation we are doubtful whether Xt has a unit root or is
trend-stationary.

• To avoid misleading inferences, we should include a deterministic
trend to the Dickey-Fuller regression:

∆Xt = β0 + β1t + πXt−1 + εt , εt
w.n.∼ (0, σ2

ε) (20)

• The unit root null and the no unit root alternative hypothesis are
unchanged and given by H0 : π = 0 and H1 : π < 0, respectively.
The Dickey-Fuller (DF) statistic is obtained as the usual t-ratio:

tπ̂ =
π̂

σ̂π̂
(21)

where π̂ is the estimate of π obtained from regression (20).
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Dickey-Fuller test with a linear trend II
• Again the presence of a linear time trend shifts the asymptotic

distribution. The critical values are presented in Table 1.
• The presence of a linear trend in the regression (20) again

changes the assumption about the unconditional mean of Xt .
• Under the null hypothesis H0 : π = 0, Xt follows a random walk

with a linear trend. Here the term β1t is accumulated to produce
a quadratic trend in the unconditional mean of Xt :

Xt = β0 + β1t + Xt−1 + εt

that yields E (Xt ) = µ0 + µ1t + µ2t2 where µ0, µ1 and µ2 are
functions of β0 and β1.

• Under the alternative hypothesis, H1 : π < 0, Xt obeys an AR(1)
process with a linear trend:

Xt = β0 + β1t + φ1Xt−1 + εt , φ < 1

which delivers a time trend in the mean E (Xt ) = α0 + α1t where
α0, α1 are functions of β0, β1 and φ.
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Dickey-Fuller distributions

Deterministic components Significance level
in the regression 10% 5% 1%

No deterministic component -1.62 -1.94 -2.57
Constant -2.57 -2.87 -3.44

Constant+trend -3.13 -3.42 -3.98

Table 1: Critical values from the Dickey-Fuller tests
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DF test with no deterministics, intercept or trend
and intercept? I

• As argued before the DF statistic with
no deterministics should not be used in applied work
unless there is a very good reason to suspect that the
mean of the process Xt is equal to zero, E(Xt) = 0.

• The question now is how to decide between intercept
and trend+intercept.

• Economic reasoning does not allow some time
series to grow continuously over time: unemployment
rate, inflation, financial returns, exchange rates,
interest rates,. . .. This should be confirmed by
visual inspection of the graph.
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DF test with no deterministics, intercept or trend
and intercept? II

• In this case, it does not make sense to allow for a
linear time trend and the DF test with intercept only
should be applied.

• The same economic reasoning and/or
visual inspection permits that the time series of
interest grows over time due to, e. g., inflation or
technological progress: variables in nominal terms,
prices, consumption, GDP,. . .

• In that case, we should allow for the presence of a
linear trend and apply the test with
trend and intercept.
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Unit root tests for AR(p) processes I

• All the Dickey -Fuller tests assume that the errors are white-noise

εt
w.n.∼ (0, σ2

ε) .

• Clearly, for many time series 1 lag as in regressions (16), (18) or
(20) is insufficient and tipically we include a sufficient number of
lags to ensure that εt

w.n.∼ (0, σ2
ε). In that case, how can we apply

the unit root tests?
• For ilustration purposes, consider an AR(2) process without

deterministic terms:

Xt = φ1Xt−1 + φ2Xt−2 + εt (22)

• The process Xt has a unit root if φ(z) = 1− φ1z − φ2z2 has a
root at z = 1, i. e., if φ(1) = 1− φ1 − φ2 = 0⇔ φ1 + φ2 = 1.

• A possible route would be to estimate the model (22) and test the
restriction φ1 + φ2 = 1.
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Unit root tests for AR(p) processes II
• However, it is more convenient to rewrite equation (22) such that
π = φ1 + φ2 − 1 is a parameter of the model. Using
φ1 = π − φ2 + 1 we have:

Xt =φ1Xt−1 + φ2Xt−2 + εt

⇔ Xt = (π − φ2 + 1) Xt−1 + φ2Xt−2 + εt

⇔ Xt − Xt−1 =πXt−1 − φ2Xt−1 + φ2Xt−2 + εt

⇔ ∆Xt =πXt−1 + δ1∆Xt−1 + εt

where π = −φ(1) = φ1 + φ2 − 1 and δ1 = −φ2.
• It is possible to show that the general AR(p) process is rewritten

as:

∆Xt = β0 + β1t + πXt−1 + δ1∆Xt−1 + . . .+ δp−1∆Xt−p+1 + εt

where π = −φ(1) = φ1 + . . .+ φp − 1 and δ1, . . . , δp−1 are
parameters that depend on φ1, . . . , φp.
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Unit root tests for AR(p) processes III

• Xt has a unit root if φ1 + . . .+ φp = 1. Hence, the null hypothesis
is H0 : π = 0 and the no unit root alternative is H1 : π < 0.

• The test is again the t-ratio for H0 and is denoted as
Augmented Dickey-Fuller test (ADF).

• The critical values are the same as for the Dickey-Fuller test that
are reported in Table 1.

• Choice of the number of lags, p:
1. General-to-specific testing: start with a high lag length value kmax .

Remove the longest lag if statistical insignificant and reestimate the
model. Repeat this process until the longest lags is statistical
significant.

2. Information criteria: AIC, BIC ou HQ.

• For both metholodogies, one should never forget to verify if the
model is well specified. In particular, one should perform
residual diagnostic checks (ACF, Q statistics,. . .) to ensure that
the errors are “white-noise".
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Limitations of the ADF tests∗ (Optional) I

• The unit root tests can have very low power, i.e., the probability
of rejecting the unit root null, H0, when H0 is true (Xt has a unit
root) can be quite low.

• This problem can become particularly serious when:
1. we have a small sample size (T ≤ 100).
2. the inverse roots of the AR polynomialare very close to the unit

circle (for example, φ1 = 0.95 in an AR(1) process). This seems to
be a very common phenomena with macroeconomic data.

3. when irrelevant regressors are included specially, linear trends,
slope dummies or to many lags (∆Xt−j )

• There is an immense amount of research about unit root tests.
• Nelson & Plosser (1983) was the first published work to study if

macroeconomic time series are classified as
difference-stationary, trend-stationary or stationary processes.

• They conclude that the most important U.S. macroeconomic time
series are well characterized by unit root processes (with or
without drift) and so without any mean reverting behaviour.
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Limitations of the ADF tests∗ (Optional) II

• According to Google Scholar, this paper has been quoted 4783
vezes until today.

• A high proportion of these citations represent new unit root tests
that contradict or reinforce the NP conclusions.
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Limitations of the ADF tests∗ (Optional) III

• This fact shows that the unit root inference problem is very
important but also very complicated or even impossible to solve.
The most important developments regarding more powerful and
robust unit root tests are the following (available in EViews):

1. ERS Tests developed by Elliot, Rothemberg e Stock (1996).
2. NG and Perron tests developed by Serena Ng and Pierre Perron

(2001).
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